SECTION 1

Why is Additive Manufacturing the future of metal manufacturing?
Advantages of AM to drive strong market growth

Today: Traditional manufacturing market
$300bn+

2020
$2bn
$7bn

2025
$18bn
$7bn

Total global Additive Manufacturing market
Expected to grow at 20% CAGR until 2025E

Global Metal AM market
Expected to grow at 29% CAGR until 2025E

Source: AM Power Report 2021, Equity Research, GS Research
AM delivers vast opportunities for customers

At the very core of the Industry 4.0 disruptive manufacturing and production revolution

<table>
<thead>
<tr>
<th>Product Characteristics</th>
<th>Conventional Casting</th>
<th>Additive Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✗ Overdesigned ✗ Poor material properties</td>
<td>✓ Higher performing products ✓ More complex geometries ✓ Reduced weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvement of performance without design limits</td>
</tr>
<tr>
<td>Lead Time</td>
<td>✗ 18 – 24 months for product launches ✗ Prototypes expensive and slow</td>
<td>✓ Prototype within days ✓ 3 weeks for first parts ✓ Easy modifications</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substantially shortened time to market</td>
</tr>
<tr>
<td>Process Efficiency</td>
<td>✗ Prototyping resource intensive ✗ Large batch processing</td>
<td>✓ Print part as needed ✓ Minimized waste and tooling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimized working capital and cash conversion cycle</td>
</tr>
<tr>
<td>Supply Chain</td>
<td>✗ Global and complex supply chain ✗ Pollution from transportation from LCC sourcing</td>
<td>✓ 24 / 7 inhouse production ✓ Manufacturing cost largely independent of country with less transportation requirements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Localization prevents supply chain disruptions</td>
</tr>
<tr>
<td>Environmental Considerations</td>
<td>✗ Significant pollution from effluents ✗ Very high energy consumption</td>
<td>✓ Near zero waste ✓ Low energy consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supports the transition to greener manufacturing</td>
</tr>
</tbody>
</table>

Source: SLM
Advantages of AM
Significant weight reduction

<table>
<thead>
<tr>
<th></th>
<th>Traditional Manufacturing</th>
<th>Metal Additive Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gooseneck bracket</td>
<td>Structural component from Krueger flap actuating mechanism for airplanes</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>2.1 kg</td>
<td>1.4 kg</td>
</tr>
<tr>
<td>Buy-to-fly</td>
<td>17x</td>
<td>-31%</td>
</tr>
<tr>
<td># of parts</td>
<td>3 parts</td>
<td>1 part</td>
</tr>
</tbody>
</table>

Source: SLM
Note: 1) Ratio between weight of raw material purchased and weight of final part.
Advantages of AM
Reduction of part count and assembly time

<table>
<thead>
<tr>
<th>Hybrid welding head</th>
<th>Traditional Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-jet unit to protect laser optics from contamination during welding process</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># of parts</th>
<th>Metal Additive Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 parts</td>
<td>1 part, -94%</td>
</tr>
</tbody>
</table>

Source: SLM
Advantages of AM
Improving functionality

Traditional Manufacturing

<table>
<thead>
<tr>
<th>Monolithic Thrust Chamber</th>
<th>Core element of a liquid-propellant rocket engine</th>
</tr>
</thead>
<tbody>
<tr>
<td># of parts</td>
<td>100+ parts</td>
</tr>
<tr>
<td>Reliability</td>
<td>Parts being assembled increases risk of failure</td>
</tr>
<tr>
<td>Functionality</td>
<td>Separate cooling structure required</td>
</tr>
</tbody>
</table>

Metal Additive Manufacturing

- 1 part
- Increased reliability
- Integrated cooling function

SECTION 2

Why are we now at an inflection point for AM?
Disruptive technologies typically have a long lead up before reaching a demand inflection point.

The additive industry has broken through as a mainstream force
Key hurdles to industrialization are being cleared

- Machine reliability not yet on required level for large scale production
- Customers often lacking sufficient skilled AM machine operators
- Specialized diplomas having only become available in the last few years
- Certification for new AM-produced parts taking longer than expected
- Business cases with beneficial economics especially in aerospace delayed due to missing certification of parts
- Productivity not yet competitive with conventional casting manufacturing for large scale production
- AM already with cost advantages on smaller scale production
- Industries working on standards and certification processes, localization policies to accelerate adoption
- NextGen machines with significant productivity increase making AM extremely cost competitive

Moving from niche market to serial production driving machine reliability improvements

Recent graduates already well versed in AM and OEMs offer trainings and webinars on large scale
Productivity increases enabling mass production

SLM is at the forefront of the push to industrialization

Phase 1 and 2
- Proof of concept of technological capabilities
- Continued development of machines, qualification and selection of parts
- Initial use cases for R&D and small-scale production
- Limiting factors: productivity and reliability of machines; economics per part

Transition to Phase 3 has been delayed

Phase 3
- Full integration of AM in manufacturing chain
- Industrialized machines
- Competitive economics facilitating large scale production while retaining advantages of AM

Productivity increase driven by NextGen machine will be significant stepping stone for transition into Phase 3
Positive AM business cases to further increase

Market expansion with next generation of components specifically designed for AM

Illustrative: Break-even in Laser Powder Bed Fusion compared to conventional manufacturing (automotive example)

- Large parts with low quantity
- Small parts with higher quantity

Number of units of individual component required per year

Size of individual component (volume in cm³)

1-Offs → 10s → 100s → 1,000s → 10,000s → 100,000s

Market expansion

Next machine generation further pushes boundaries for efficient AM production

Positive AM business cases:

- High-end premium cars
- Luxury cars
- Mid-size cars
- Race cars
- Test mules
- Prototype

Market expansion and growth driven by several favorable developments

- Productivity increase of next generation of AM machines
- New parts being specifically designed to make use of advantages of AM production
- AM increasingly being integrated in industrialized production processes
- Completion of ongoing certification processes of AM produced parts

Source: SLM
AM industry growth driven by applications transitioning from prototyping to large scale production

Example: Metal additive manufacturing applications in the Aero Engine sector

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Nozzles</td>
<td>In full-rate production</td>
<td>Units to double in 5 years</td>
</tr>
<tr>
<td>Casing Features</td>
<td>Prototyping</td>
<td>2-3 years to production</td>
</tr>
<tr>
<td>Compressor Components</td>
<td>Prototyping</td>
<td>2-3 years to production</td>
</tr>
<tr>
<td>MRO</td>
<td>Qualification</td>
<td>2-4 years to production</td>
</tr>
<tr>
<td>Prototyping</td>
<td>+3 years to production</td>
<td>Vanes</td>
</tr>
<tr>
<td>Some in production</td>
<td>1-2 years to more production</td>
<td>Rakes</td>
</tr>
<tr>
<td>Awaiting larger platforms</td>
<td>+4 years to production</td>
<td>Liners</td>
</tr>
<tr>
<td>Qualification</td>
<td>+2 years to production</td>
<td>Bearing Housings</td>
</tr>
</tbody>
</table>

Adoption of metal additive manufacturing is expanding and is being integrated into the design process of new engine programs, creating a growing number of applications for selective laser melting

Source: SLM
AM key in transformation of global supply chains

COVID-19 has accelerated this transition

Further accelerated by COVID-19

Megatrends

- **Decentralization & flexibilization of manufacturing**
- **Shifting manufacturing in-house**
- **Repatriation of manufacturing**
- **Focus on green manufacturing**

How AM will be part of the solution

- **Flexible production** of various parts on same machine type relinquishes expensive retooling of traditional manufacturing equipment, allowing businesses to use AM to bridge supply gaps
- **Production costs largely independent of location** as labor costs of operating the machine are of minor importance; AM is becoming more and more **cost competitive** as machine productivity increases
- Next generation products already **include AM in their design processes** facilitating the transition

New AM manufacturing plants will bring a **whole new eco system** of surrounding suppliers and customers with them, which will result in **new regional job opportunities**
Components produced with AM with substantially better environmental footprint

- **Waste reduction**: Near zero waste produced. Metal powder up to 95% recyclable
- **Lower energy consumption**: Requires less energy than traditional manufacturing methods
- **Greener components**: Design flexibility results in significant reduction of weight and assembly steps of components
- **Leaner supply chains**: Enables local-for-local production and reduces dependency on global supply chains
SECTION 3

Why is Laser Powder Bed Fusion superior to other additive manufacturing technologies?
Our sole focus: Superior Laser Powder Bed Fusion (LPBF)

High mechanical properties combined with great degree of geometric freedom

Superior mechanical properties...

Size / Geometric Freedom
- Size of parts **only limited by machine chamber size**
- Outperforming in terms of absolute size and variability of part thickness
- Geometry complexity is for free, allowing for topology optimization that is without limits

Mechanical Properties
- Constantly **high mechanical properties**
- Low porosity
- High density

Wide Material Choice
- Compared to all other additive technologies **LPBF offering greatest number of input materials**.
- Any material that can be welded can be processed

One Step-Processing
- Little to no post-production increases **“first time right potential”**
- Enabling thin wall sections
- Consistently accurate geometrical output due to controlled and predictable part shrinkage and distortion

...make LPBF the leading AM technology today and tomorrow

![Diagram showing installation base (units) by technology 2019](image)

![Bar chart showing investment related to AM in next years](image)

Notes: 1) AM Power. 2) Survey by Barnes Global Advisors: “What capital equipment related to metal AM does your company plan to purchase in the next 2-5 years?”
LPBF shows superior properties vs. MBJ
Better quality, material range and geometric freedom

- **High** mechanical properties and **extreme accuracy**
- **High** density and **low** porosity
- **Wide** range of materials
- **Size only constrained by machine chamber size**, suited for a wide range of thickness
- **Controlled** part shrinkage and part distortion possible
- Solid metal parts are produced directly, in a **single process**

Quality
- **Lower** mechanical properties, **lower** density and **higher** porosity vs. LPBF
- Complex sintering process with **many unknown effects** and **low first-time-right availability**

Material range
- Currently, material choice **limited**

Geometric freedom
- **Limited** size and minimum thickness of parts
- **Shape limitations** due to debinding and sintering
- **Uncontrolled** creep deformation possible

Productivity
- **Multi-step process** – solid metal parts are only created during last step of sintering
- **Build-up rate significantly lowered** by shrinkage – debinding and sintering required to turn “green part” into metal part

Source: AM Power, SLM
NextGen LPBF at least as productive as MBJ...
...while keeping its advantage in material properties

Source: AM Power; Company disclosure; SLM; Wielage, B. et al. (2010). Utilisation potential of water-atomised metal powders for thermal spraying.
Note: Compares NextGen LPBF technology with latest single pass MBJ machines. Packing density based on illustrative metal AM component.

Example based on illustrative metal AM component:

Laser Power Bed Fusion (LPBF) vs. Metal Binder Jetting (MBJ)

- **Printing**
 - Current build rate of <200 cm3/h with potential of >1000 cm3/h for NextGen
 - Little to no post-production required

- **Post-Processing**
 - >1000 cm3/h

- **Final metal part build-up rate**
 - >1000 cm3/h

- **Debinding**
 - N/A

- **Sintering**
 - c.1,800 cm3/h
 - Part volume shrinkage during post-processing

- **Powder build-up rate**
 - 1,200 cm3/h

- **Packing density**
 - 15%

- **(Green) part build-up rate**
 - 12,000 cm3/h

- **Part volume shrinkage during post-processing**
 - 45%

“Green” part build-up rate: 1,200-2,400 cm3/h (depending on packing density)
Debinding and sintering required to turn “green” part into solid metal part
Requires between 16 to 32h for both steps

Current build rate of <200 cm3/h with potential of >1000 cm3/h for NextGen

Does not include additional time required for debinding/sintering
SECTION 4

Why SLM will continue to lead
SLM Solutions is the leader in Metal AM

Enabling long-term sustainable growth

Our company has formed the metal additive industry since the beginning. We will be the market leader for production applications of LPBF globally.

We continue to push the limits of additive manufacturing and thereby expand and extend our technology leadership. We will drive the future of LPBF.

We deliver world-class operations and focus on relentless continuous improvement by delivering world class industrialization and commercialization.

The success of our customers is our success. Customer first mentality for every employee in every department is our key growth driver.
SLM Solutions – a technological pioneer active in the AM space for more than 50 years\(^1\)

Corporated Milestones

- **1960s**: Introduction of prototype tooling technologies by MCP Group, the precursor to SLM Solutions
- **1996**: Co-inventor of Selective Laser Melting base patent
- **2006**: Founding of the operating company SLM Solutions GmbH
- **2003**: Launch of the first selective laser melting system in the market, the SLM®250
- **2006**: Launch of the SLM®280 Twin Production Series
- **2014**: IPO of SLM Solutions Group AG
- **2017**: Launch of the SLM®800 Production Series
- **2020**: Commercial launch of NXG XII 600 Multi laser machine
- **2019**: Appointment of new management team and board
- **2016**: Failed takeover attempt by GE

Technology Advances

- **1996**: Creation of the Selective Laser Melting base patent
- **2000**: First to the market with twin (SLM®280) and quad (SLM®500) laser technology
- **2010**: Launch of the SLM®500 Production Series
- **2011**: Launch of the SLM®280 Twin Production Series
- **2013**: Launch of the SLM®500 Production Series
- **2018**: Move into new HQ in Lübeck
- **2019**: Failed takeover attempt by GE

\(^1\) Timeframe includes activities within the MCP Group out of which SLM Solutions was split off.
>700 machines installed globally
Serving a broad range of blue chip customers

Installed base by region
- EMEA: 55%
- NA: 24%
- APAC: 21%

Installed base by machine type
- SLM®125: >50% of IB
- SLM®280: >90% of Backlog
- SLM®500 & 800: >700 machines installed globally

Source: SLM
Note: Installed machine base as of end 2020

Serving more than blue chip customers

150

including Fortune 500 companies, Dax30 companies, some of the largest OEMs as well as leaders in space exploration, aviation, electro mobility, motor racing, science, and many more...

Rolls-Royce, Emerson, Blue Origin, Honeywell, Airbus, Boeing, Baker Hughes, Safran, BMW, Porsche, NASA, Ford
Technology pioneer with history of product innovation

<table>
<thead>
<tr>
<th>Year</th>
<th>SLM@280</th>
<th>SLM@280</th>
<th>SLM@500</th>
<th>SLM@800</th>
<th>NXG XII 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Addressable Market</th>
<th>Prototyping, small series production</th>
<th>High volume, serial production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamber Size</td>
<td>280x280x365</td>
<td>500x280x365</td>
</tr>
<tr>
<td></td>
<td>280x280x365</td>
<td>500x280x850</td>
</tr>
<tr>
<td></td>
<td>500x280x365</td>
<td>600x600x600</td>
</tr>
<tr>
<td>Laser</td>
<td>Single</td>
<td>Twin</td>
</tr>
<tr>
<td></td>
<td>Twin</td>
<td>Twin & Quad</td>
</tr>
<tr>
<td></td>
<td>Quad</td>
<td>12</td>
</tr>
<tr>
<td>Build Rate cm³/h</td>
<td>Up to 88</td>
<td>Up to 88</td>
</tr>
<tr>
<td></td>
<td>Up to 171</td>
<td>Up to 171</td>
</tr>
<tr>
<td></td>
<td>>1,000</td>
<td></td>
</tr>
</tbody>
</table>

Larger building platform + higher build rate imply >500% productivity increase

The superior efficiency level of the NXG XII 600 machine enables SLM to target a new market.

Development cycle for NextGen machine is >5 years.

Source: SLM
SLM’s NXG XII 600 machine is a game changer for the entire AM industry

12 lasers designed for serial production

- **20x faster** than a standard single laser system
- **5x faster** than the SLM quad-laser machine
- Designed for serial production
- Optimized for large parts and high-volume production

- **12 Lasers**
 - 1000 Watts each

- Zoom function
 - Build up rate up to 1000 cm³/h

- Capable of large layer thickness
- Fine features and delicate patterns possible
NXG XII 600 is moving metal AM economics to a completely new level

SLM’s current generation of machines is already at the top level of productivity for Metal AM machines…

... but SLM’s NextGen machine will be a gamechanger

Source: Company information, SLM research
Leadership with extensive industry track record

Sam O’Leary
CEO
Since Dec-2019
(CEO since Jan-2021)

- GE Additive Director of Product Management
- Prior: GE Power Supply Chain Strategy Leader

Dirk Ackermann
CFO
Since Jun-2020

- Senior Finance Manager at GE
- Prior: Finance Manager in various segments and locations of GE

VP Engineering & Technology
former GE since Jan-2020

Service & Application
former Rockwell Collins since Sep-2020

General Counsel
former Siemens since Sep-2020

Global Sales & GM North America
former ExOne, 3D Systems since Feb-2021

Product Management
former Trumpf since Sep-2020

Global Supply Chain
former Airbus since Jan-2020

GM India
former GE since 2016

GM China and Singapore
former Norican since Dec-2018

Quality Management
former Draegerwerke since Jan-2020

Global HR
former Senvion since Oct-2019

Experienced management team driving best-in-class processes across the organization

Refers to positions having been created by new management team.
Increased focus on services

Acceleration of service revenues while boosting profitability

- **Limited focus** across company, main goal to sell machines
- **Customer success not a KPI**, limited collaborations with customers
- Current **machine generation with low powder consumption** given application in prototyping and small series production

Historically, limited focus on services

<table>
<thead>
<tr>
<th>Services</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>~25%</td>
<td>~75%</td>
</tr>
</tbody>
</table>

Share expected to significantly increase going-forward

- **Our customers’ success is our success**
- **Increased alignment of revenues** to criteria important to our customers
- **NXG machines requiring significant powder supply** given large series production
- **Mandatory service contracts** on NXG machines to ensure customer success
SECTION 5

Financial overview
Successful target delivery 2020

Strong growth in a flat market

<table>
<thead>
<tr>
<th></th>
<th>Guidance</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td></td>
<td>49.0</td>
<td>61.8</td>
</tr>
<tr>
<td>EBITDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidance</td>
<td></td>
<td>(26.0)</td>
<td>(14.8)</td>
</tr>
<tr>
<td>Between (13) to (18)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Orders & revenue
Accelerated growth in second half of 2021

Order In-Take

- Order In-take improvement YOY driven by NXG & strength of core portfolio
- Solid deal pipeline going into final quarter of 2021

Revenue

- Revenue increase YoY driven by backlog conversion
- Uptick in after sales revenues confirming higher utilization rates at customers
Backlog & revenue guidance walk
On track to meet full-year guidance

- Notable amount of backlog to be converted in 2022 driven by NXG
- Assumes no revenue miss mitigating strong headwinds due to supply chain constraints
- Multiple larger projects to be converted in 4Q21
- Backlog solely comprised of machine orders (excludes powder/services)
Path to growth and profitability
High operating leverage & NXG introduction

Currently: Negative EBITDA largely driven by high non-material costs (R&D, admin) relatively to revenue

Illustrative: Revenue increase resulting in significant operating leverage due to decoupling of non-material costs

Currently:

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Cost of materials</th>
<th>Gross profit</th>
<th>Non-material costs</th>
<th>EBITDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Illustrative:

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Cost of materials</th>
<th>Gross profit</th>
<th>Non-material costs</th>
<th>EBITDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>+100%</td>
<td>Constant margin</td>
<td>+100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moderate increase
Significant Improvement
Guidance & long-term view
Targeting 5x revenue growth in 5 years

Guidance

<table>
<thead>
<tr>
<th></th>
<th>2021E<sup>-1) </sup></th>
<th>2022</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>At least €71m</td>
<td>At least €100m</td>
<td>~5x revenue growth vs 2021</td>
</tr>
<tr>
<td>EBITDA</td>
<td>Significant YoY<sup>-2)</sup> improvement</td>
<td>Break-even on quarterly basis in second half</td>
<td>+++</td>
</tr>
</tbody>
</table>

Key Assumptions

2022: Easing of supply chain constraints in second half, no significant COVID-19 restrictions in key markets, successful NXG ramp up

2026: Ramp-up in serial production of key industries as expected in market forecasts, no significant economic events

Expected market size⁻³⁾

- ~€18bn
- ~€7bn

1. Latest estimate by management
2. Year over year
3. Source: AMPower Report 2020
SECTION 6

Industry Peer Comparison
SLM in Perspective

SLM with superior technological capabilities

<table>
<thead>
<tr>
<th>Technology</th>
<th>SLM Solutions</th>
<th>Velo3D</th>
<th>Desktop Metal¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Powder Bed Fusion</td>
<td>Powder Bed Fusion</td>
<td>Binder Jetting</td>
</tr>
<tr>
<td>Support Free</td>
<td>Yes</td>
<td>Yes</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Applications</td>
<td>Production of high value / high complexity metal parts</td>
<td>Production of high value / high complexity metal parts</td>
<td>Mass production of low-cost / low complexity parts</td>
</tr>
<tr>
<td>Industry Diversification</td>
<td>Aerospace, auto, energy, medical, research</td>
<td>Aerospace, energy</td>
<td>Auto, general industry</td>
</tr>
<tr>
<td>IP Portfolio</td>
<td>>400 publications >130 granted patents</td>
<td><50 granted patents</td>
<td>~120 publications</td>
</tr>
<tr>
<td>Technology Heritage</td>
<td>20 years</td>
<td>7 Years</td>
<td>6 Years</td>
</tr>
<tr>
<td>Machine Portfolio</td>
<td>5 (1 to 12 lasers)</td>
<td>2 (2 to 8 lasers)</td>
<td>3</td>
</tr>
<tr>
<td>Maximum Build Size</td>
<td>600 mm X 600 mm X 600 mm 40% Larger than Velo</td>
<td>Ø 600 mm x 550 mm</td>
<td>490 x 380 x 260 mm</td>
</tr>
<tr>
<td>Proven Productivity</td>
<td>>1,000 cc/h</td>
<td><100 cc/h</td>
<td>~1,000 cc/h</td>
</tr>
</tbody>
</table>

Source: SLM, Velo3D disclosure, Desktop Metal disclosure

Note: ¹ Focus on Desktop Metal’s binder jet printing segment.
SLM in Perspective (cont.)

SLM with significantly more advanced fundamentals

<table>
<thead>
<tr>
<th></th>
<th>SLM Solutions</th>
<th>Velo3D</th>
<th>Desktop Metal¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed Base (# machines)</td>
<td>>650</td>
<td><50</td>
<td>Production System release H2 21</td>
</tr>
<tr>
<td>Market Share (%)</td>
<td>>10%</td>
<td><3%</td>
<td>Not applicable, different market</td>
</tr>
<tr>
<td>Employees (#)</td>
<td>>450</td>
<td>~100</td>
<td>~300</td>
</tr>
<tr>
<td>In-house Manufacturing</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Global Sites (#)</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Direct Global Sales</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Revenue 2020 (€m)</td>
<td>€62m</td>
<td>~€16m</td>
<td>~€14m</td>
</tr>
<tr>
<td>Revenue Growth 2020 (%)</td>
<td>26%</td>
<td>21%</td>
<td>-38%</td>
</tr>
</tbody>
</table>

Source: SLM, Velo3D disclosure, Desktop Metal disclosure

Note: 1) Focus on Desktop Metal’s Binder Jet segment.