

INVESTOR PRESENTATION

April 2021

SLM – Key Investment Highlights

SLM - a leader in the high growth and highly innovative AM technology sector

- Current market size ~\$12bn with CAGR of 28% until 2025
- Accelerated demand for AM due to reshoring and the need for more flexible supply chains

Our sole focus: Superior Laser Powder Bed Fusion

- Technology addresses most innovative and most attractive segments of the AM market: High precision, high performance parts across key regulated and unregulated industries
- SLM features one of the strongest IP portfolios and R&D and engineering teams in the sector, consistently investing leading industry innovation (~20% of revenue in R&D (2020))

SLMs is at the very core of the Industry 4.0 disruptive manufacturing and production revolution

- Fast evolving ecosystem around SLM's core metal printing technology: engineering capabilities, software, powder, process technology
- AM helps to significantly improve the ecological footprint of products and metal manufacturing process (energy and raw material savings)

SLM's NXG XII 600 machine is a game changer for the entire AM industry

- Worlds fasted and most efficient large platform PBLF printer launched in Nov 2020
- High precision, high performance, high value parts produced cost competitively compared to conventional processes (metal subtraction, casting)

Sizable service business opportunity

- Currently over 650 machines installed, containing over 1,000 lasers
- Machines in industrial processes generate significant constant revenue stream from service and powder

Strong international management team of growth and technology experts

New management refocused company on growth and technology and manufacturing excellence

Poised for continuous growth

- > €30m backlog and NXG ramp up underpins SLM's growth trajectory
- Attractive and expanding gross margins
- Significant operating leverage. The business is set up for growth
- Core shareholder group supports growth trajectory with funding

SECTION 1

Why is Additive Manufacturing the future of metal manufacturing?

Advantages of AM to drive strong market growth

AM delivers vast opportunities for customers

At the very core of the Industry 4.0 disruptive manufacturing and production revolution

	Conventional Casting	Additive Manufacturing	
Product Characteristics	× Overdesigned× Poor material properties	 Higher performing products More complex geometries Reduced weight 	Improvement of performance without design limits
Lead Time	 × 18 – 24 months for product launches × Prototypes expensive and slow 	 Prototype within days 3 weeks for first parts Easy modifications 	Substantially shortened time to market
Process Efficiency	 Prototyping resource intensive Large batch processing 	 Print part as needed Minimized waste and tooling 	Optimized working capital and cash conversion cycle
Supply Chain	 Global and complex supply chain Pollution from transportation from LCC sourcing 	 24 / 7 inhouse production Manufacturing cost largely independent of country with less transportation requirements 	O Localization prevents supply chain disruptions
Environmental Considerations	 Significant pollution from effluents Very high energy consumption 	✓ Near zero waste✓ Low energy consumption	Supports the transition to greener manufacturing

Advantages of AM Significant weight reduction

Advantages of AM Reduction of part count and assembly time

8

Advantages of AM Improving functionality

Traditional Manufacturing Monolithic Thrust Chamber Core element of a liquid-propellant rocket engine # of parts **100+ parts** Reliability Functionality

SECTION 2

Why are we now at an inflection point for AM?

Disruptive technologies typically have a long lead up before reaching a demand inflection point

% of world population using the internet

% of electric vehicle share in global passenger car stock

AM is a disruptive technology that will completely turn industrial manufacturing as we know it on its head

As with most disruptive technology cycles, the time between invention and mass adoption is difficult to predict

Adoption of the AM technology is at the start of the inflection point where the launch of the NextGen machines will drive mass adoption

As this new tipping point for the industry and not an evolution

The additive industry has broken through as a mainstream force

Key hurdles to industrialization are being cleared

Reliability of Machines

 Machine reliability not yet on required level for large scale production

- Customers often lacking sufficient skilled AM machine operators
- Specialized diplomas having only become available in the last few years

Certification of AM Parts

- Certification for new AMproduced parts taking longer than expected
- **×** Business cases with beneficial economics especially in aerospace delayed due to missing certification of parts

Cost Per Part

- **×** Productivity not yet competitive with conventional casting manufacturing for large scale production
- AM already with cost advantages on smaller scale production

Moving from niche market to serial production driving machine reliability improvements

Recent graduates already well versed in AM and OEMs offer trainings and webinars on large scale

Industries working on standards and certification processes, localization policies to accelerate adoption

NextGen machines with significant productivity increase making AM extremely cost competitive

Productivity increases enabling mass production

SLM is at the forefront of the push to industrialization

Phase 1 and 2

- Proof of concept of technological capabilities
- Continued development of machines, qualification and selection of parts
- Initial use cases for R&D and small-scale production
- Limiting factors: productivity and reliability of machines; economics per part

Transition to Phase 3 has been delayed

Phase 3

- Full integration of AM in manufacturing chain
- Industrialized machines
- Competitive economics facilitating large scale production while retaining advantages of AM

Positive AM business cases to further increase

Market expansion with next generation of components specifically designed for AM

<u>Illustrative:</u> Break-even in Laser Powder Bed Fusion compared to conventional manufacturing (automotive example)

Market expansion and growth driven by several favorable developments

Productivity increase of next generation of AM machines

New parts being specifically designed to make use of advantages of AM production

AM increasingly being integrated in industrialized production processes

Completion of ongoing certification processes of AM produced parts

AM industry growth driven by applications transitioning from prototyping to large scale production

Adoption of metal additive manufacturing is expanding and is being integrated into the design process of new engine programs, creating a growing number of applications for selective laser melting

AM key in transformation of global supply chains

COVID-19 has accelerated this transition

Flexible production of various parts on same machine type relinquishes expensive retooling of traditional manufacturing equipment, allowing businesses to use AM to bridge supply gaps

w AM will be par of the solution

How

Production costs largely independent of location as labor costs of operating the machine are of minor importance; AM is becoming more and more **cost competitive** as machine productivity increases

Next generation products already include AM in their design processes facilitating the transition

New AM manufacturing plants will bring a **whole new eco system** of surrounding suppliers and customers with them, which will result in **new regional job opportunities**

SLM enables greener manufacturing

Components produced with AM with substantially better environmental footprint

SECTION 3

Why is Laser Powder Bed Fusion superior to other additive manufacturing technologies?

(IDDE)

Our sole focus: Superior Laser Powder Bed Fusion (LPBF)

High mechanical properties combined with great degree of geometric freedom

...make LPBF the leading AM technology today and tomorrow

Superior mechanical properties...

LPBF shows superior properties vs. MBJ

Better quality, material range and geometric freedom

NextGen LPBF at least as productive as MBJ...

...while keeping its advantage in material properties

SECTION 4

Why SLM will continue to lead

SLM Solutions – a technological pioneer active in the AM space for more than 50 years⁻¹⁾

(1- timeframe includes activities within the MCP Group out of which SLM Solutions was split off

>650 machines installed globally

Serving a broad range of blue chip customers

Installed base by region

Installed base by machine type

Serving more than 150 including Fortune 500 companies, Dax30 companies, some of the largest OEMs as well as leaders in space exploration, aviation, electro mobility, motor racing, science, and many more... Rolls-Royce EMERSON **BLUE ORIGIN** Honeywell AIRBUS Baker Hughes > 🛛 🥱 SAFRAN PORSCHE

Technology pioneer with history of product innovation

	2009	2011	2013	2017	2020
	SLM®280	SLM®280	SLM®500	SLM®800	NXG XII 600
Addressable Market					High volume, seria production
Chamber Size	280x280x365	280x280x365	500x280x365	500x280x850	600x600x600
Laser	Single	Twin	Twin & Quad	Quad	12
Build Rate cm³/h	Up to 88	Up to 88	Up to 171	Up to 171	>1,000
Larger building platform + higher build rate imply >500% productivity increase					
The superior	•		machine enables tGen machine is >		new market

SLM's NXG XII 600 machine is a game changer for the entire AM industry

12 lasers designed for serial production

NXG XII 600 is moving metal AM economics to a completely new level

SLM's current generation of machines is already at the top level of productivity for Metal AM machines...

Team Leadership with extensive industry track record

Experienced management team driving best in-class processes across the organization

SLM

Acceleration of service revenues while boosting profitability

Historically, limited focus on services

- Limited focus across company, main goal to sell machines
- **Customer success not a KPI**, limited collaborations with customers
- Current machine generation with low powder consumption given application in prototyping and small series production

SECTION 5

Financial overview

Successful target delivery

Continued progress on turnaround path

Strong operational performance

Solid foundation to continue growth story

- Order-Intake in 2H more than doubled vs 1H reflecting ongoing improvement in key markets & industries
- Backlog up YoY⁻²⁾ if €5.6m adjustment in 2Q20 considered

Selected Financials

in €m	2020	2019	Change
Machines Revenue	45.1	35.1	28%
After Sales Revenue	16.6	13.8	20%
Gross Profit	53%	53%	Opt
Personnel expenses	(35.6)	(31.9)	12%
Other Exp. & Income	(13.0)	(17.6)	(26)%
EBITDA	(14.8)	(26.0)	(43)%
Op. Cash-flow	(3.4)	3.5	U
Working Capital	24.4	36.8	(34)%
Cash	18.9	25.5	(26)%

- Personnel expense ↑ due to hiring of key talent
- Other expense \downarrow due to more cautious spending
- Working Capital ↓ due to operational excellence initiatives, increase in 2021 due to NXG ramp-up
- Initiated 2nd tranche of convertible 2020/26 (€15m) to strengthen balance sheet

Path to growth and profitability High operating leverage & NXG introduction

<u>*Currently:*</u> Negative EBITDA largely driven by high nonmaterial costs (R&D, admin) relatively to revenue

NXG XII 600: Inquiry to Order (ITO) Customer Journey

Current commitments cover a significant portion of the 2022 manufacturing capacity

Guidance & long-term view Continued progress on turnaround path

2021 Guidance

	2020	2021	2022 +
Sales	€61.8M	at least 15% YoY ⁻¹⁾ growth	Further acceleration
EBITDA	€(14.8)M	Further improvement	

Assuming no drastic deterioration of the current COVID-19 situation.

2025E expected market size

SECTION 6

Industry Peer Comparison

SLM in Perspective

SLM with superior technological capabilities

	SLM	Velo3D	Desktop Metal ¹
Technology	Powder Bed Fusion	Powder Bed Fusion	Binder Jetting
Support Free	Yes	Yes	Not applicable
Applications	Production of high value / high complexity metal parts	Production of high value / high complexity metal parts	Mass production of low-cost / low complexity parts
Industry Diversification	Aerospace, auto, energy, medical, research	Aerospace, energy	Auto, general industry
IP Portfolio	>400 publications >130 granted patents	<50 granted patents	~120 publications
Technology Heritage	20 years	7 Years	6 Years
Machine Portfolio	5 (1 to 12 lasers)	2 (2 to 8 lasers)	3
Maximum Build Size	600 mm X 600 mm X 600 mm 40% Larger than Velo	Ø 600 mm x 550 mm	490 x 380 x 260 mm
Proven Productivity	>1,000 cc/h	<100 cc/h	~1,000 cc/h

SLM in Perspective (cont.)

SLM with significantly more advanced fundamentals

	SLM	Velo3D	Desktop Metal ¹
Installed Base (# machines)	>650	<50	Production System release H2 21
Market Share (%)	>10%	<3%	Not applicable, different market
Employees (#)	>450	~100	~300
In-house Manufacturing	Yes	No	No
Global Sites (#)	4	1	1
Direct Global Sales	Yes	No	No
Revenue 2020 (€m)	€62m	~€16m	~€14m
Revenue Growth 2020 (%)	26%	21%	-38%